首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The connection between ionophore-mediated Ca2+-movements and intermediary metabolism in human red cells. II. Site and mode of glycolytic activation during Ca2+-loading
Authors:P Arese  A Bosia  GP Pescarmona  U Till
Institution:1. Istituto di Chimica Biologica, Università di Sassari, 07100 Sassari, Italy;2. Physiologisch-chemisches Institut, Friedrich-Schiller-Universität, Jena, DDR.
Abstract:Human red cells (RBC) respond to moderate Ca2+-loading with increased ATP consumption and stimulation of glycolytic flux. 1. Ca2+-induced metabolite transitions at different pH-values showed a clearcut crossover at the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase (GAPDHPGK)-steps. 2. The behavior of glycolytic metabolites in iodoacetate-treated, GAPDH-inhibited, and in phosphoenolpyruvate-loaded RBC ruled out activation of hexokinase, phosphofructokinase and pyruvate kinase. 3. Glycolytic stimulation is linked to Ca2+-extrusion rate and not to the loaded Ca2+. 4. Adenine nucleotides and inorganic phosphate could be ruled out as the connecting link between glycolytic activation and Ca2+-extrusion. 5. NADH oxidation was observed at all pH-values studied when the RBC were incubated either at low or high extracellular potassium. NADH is product-inhibitor of GAPDH. The concentration (34 μM) of thermodynamically free NADH calculated from the GAPDHPGK equilibrium reactants was in the inhibitory range: any decrease in NADH is therefore followed by activation of GAPDH. NADNADH ratio seems to be the connecting link between ATP consuming ion transport and ATP generation by glycolysis.
Keywords:Reprint requests to P  A  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号