Abstract: | Abstract Random regression models are widely used in the field of animal breeding for the genetic evaluation of daily milk yields from different test days. These models are capable of handling different environmental effects on the respective test day, and they describe the characteristics of the course of the lactation period by using suitable covariates with fixed and random regression coefficients. As the numerically expensive estimation of parameters is already part of advanced computer software, modifications of random regression models will considerably grow in importance for statistical evaluations of nutrition and behaviour experiments with animals. Random regression models belong to the large class of linear mixed models. Thus, when choosing a model, or more precisely, when selecting a suitable covariance structure of the random effects, the information criteria of Akaike and Schwarz can be used. In this study, the fitting of random regression models for a statistical analysis of a feeding experiment with dairy cows is illustrated under application of the program package SAS. For each of the feeding groups, lactation curves modelled by covariates with fixed regression coefficients are estimated simultaneously. With the help of the fixed regression coefficients, differences between the groups are estimated and then tested for significance. The covariance structure of the random and subject-specific effects and the serial correlation matrix are selected by using information criteria and by estimating correlations between repeated measurements. For the verification of the selected model and the alternative models, mean values and standard deviations estimated with ordinary least square residuals are used. |