Evidence for an amphipathicity independent cellular uptake of amphipathic cell-penetrating peptides. |
| |
Authors: | A Scheller B Wiesner M Melzig M Bienert J Oehlke |
| |
Affiliation: | Institute of Molecular Pharmacology, Berlin, Germany. |
| |
Abstract: | The cellular uptake of a peptide set derived from membrane-permeable alpha-helical amphipathic peptides by stepwise alterations of structure forming propensity and charge was studied by confocal laser scanning microscopy (CLSM) combined with HPLC. For CLSM monitoring, an online protocol was employed that avoided bias of the uptake results by washout. Using this protocol, extensive fluorescence, approaching the intensity of the external peptide, was observed in the cytosol and nucleus within minutes in all cases, irrespective of the degree of amphipathicity. HPLC analyses of the cell lysates revealed the unmetabolized peptides to be the predominant source of the intracellular fluorescence. Significant amphipathicity-dependent differences became apparent only after washing the peptide-loaded cells, reflecting the effects of amphipathicity on resistance to wash out. Exposure of the cells to the peptides at 37 and 0 degrees C led to similar results, indicating the nonendocytic character of the uptake. With a view to practical applications, the results of the present study open the possibility of exploiting nonamphipathic peptides as vectors for translocating polar compounds into the cell interior, which would circumvent substantial obstacles currently connected with the use of amphipathic vector peptides, such as membrane toxicity and low solubility. Moreover, differences in the uptake of several members of the investigated peptide series into different cell types present a promising basis for the design of cell-type specific vector peptides. |
| |
Keywords: | |
|
|