首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of some heterocyclic herbicides on CO2 assimilation by spinach chloroplasts
Authors:MARÍ  A A. DÍ  AZ,ANA CHUECA,JULIO L. GORGÉ  
Affiliation:Department of Biochemistry, Estación Experimental del Zaldín (C.S.I.C.), Granada, Spain
Abstract:We have studied the inhibitory effect of heterocyclic herbicides simazine, paraquat, pyrazon and amitrole on photosynthetic CO2 fixation and on the level of intermediates of the CO2 assimilation cycle in isolated spinach (Spinacia oleracea) chloroplasts, as well as their in vitro activities on ribulose-1,5-bisphosphate carboxylase and fructose-1,6-bisphosphatase. The half inhibitory concentrations (I50) of CO2 assimilation were about 1 μM for simazine and paraquat, and 10 μM for pyrazon. Amitrole, with an I50 100 μM, gave only a weak inhibition. In the presence of simazine or pyrazon the triose-phosphates/phosphoglycerate ratio diminished because of a decrease of the triose-phosphates percentage from 47% to 19%, which means an inhibition of the phosphoglycerate reduction step by a low NADPH synthesis. However, there was not a parallel increase of phosphoglycerate, because of collateral pathways leading to phospho-enolpyruvate, amino acids and other non-identified compounds. Paraquat did not give such a decreased ratio, which could be explained as an inhibition of some step of the Calvin cycle later than triose-phosphates by the H2O2 formed in a Mehler reaction. Amitrole did not show any effect on the pattern of intermediates. Simazine and pyrazon at 10 μM concentration promote a 20–30% activation of ribulose-1,5-bisphosphate carboxylase activity, whereas paraquat, pyrazon and simazine showed an I50 about 100 μM for the inhibition of the photosynthetic fructose-1,6-bisphosphatase.
Keywords:Paraquat    simazine    pyrazon    amitrole    spinach    chloroplasts    CO2 assimilation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号