首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Respiratory carbon metabolism in the high mountain plant species Ranunculus glacialis
Authors:Nogués Salvador  Tcherkez Guillaume  Streb Peter  Pardo Antoni  Baptist Florence  Bligny Richard  Ghashghaie Jaleh  Cornic Gabriel
Institution:Station Alpine Joseph Fourier, UMS UJF CNRS 2925-Col du Lautaret, 05480 Villar d'Arène, France. salvador.nogues@ub.edu
Abstract:Very little is known about the primary carbon metabolism of the high mountain plant Ranunculus glacialis. It is a species with C3 photosynthesis, but with exceptionally high malate content in its leaves, the biological significance of which remains unclear. 13C/12C-isotope ratio mass spectrometry (IRMS) and 13C-nuclear magnetic resonance (NMR) labelling were used to study the carbon metabolism of R. glacialis, paying special attention to respiration. Although leaf dark respiration was high, the temperature response had a Q10 of 2, and the respiratory quotient (CO2 produced divided by O2 consumed) was nearly 1, indicating that the respiratory pool is comprised of carbohydrates. Malate, which may be a large carbon substrate, was not respired. However, when CO2 fixed by photosynthesis was labelled, little labelling of the CO2 subsequently respired in the dark was detected, indicating that: (i) most of the carbon recently assimilated during photosynthesis is not respired in the dark; and (ii) the carbon used for respiration originates from (unlabelled) reserves. This is the first demonstration of such a low metabolic coupling of assimilated and respired carbon in leaves. The biological significance of the uncoupling between assimilation and respiration is discussed.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号