首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of metal-ion-dependent cleavages of RNA by a DNA enzyme and a hammerhead ribozyme
Authors:He Qiu-Chen  Zhou Jing-Min  Zhou De-Min  Nakamatsu Yuka  Baba Tadashi  Taira Kazunari
Affiliation:Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan.
Abstract:Joyce's DNA enzyme catalyzes cleavage of RNAs with almost the same efficiency as the hammerhead ribozyme. The cleavage activity of the DNA enzyme was pH dependent, and the logarithm of the cleavage rate increased linearly with pH from pH 6 to pH 9 with a slope of approximately unity. The existence of an apparent solvent isotope effect, with cleavage of RNA by the DNA enzyme in H(2)O being 4.3 times faster than cleavage in D(2)O, was in accord with the interpretation that, at a given pH, the concentration of the active species (deprotonated species) is 4.3 times higher in H(2)O than the concentration in D(2)O. This leads to the intrinsic isotope effect of unity, demonstrating that no proton transfer occurs in the transition state in reactions catalyzed by the DNA enzyme. Addition of La(3+) ions to the Mg(2+)-background reaction mixture inhibited the DNA enzyme-catalyzed reactions, suggesting the replacement of catalytically and/or structurally important Mg(2+) ions by La(3+) ions. Similar kinetic features of DNA enzyme mediated cleavage of RNA and of hammerhead ribozyme-mediated cleavage suggest that a very similar catalytic mechanism is used by the two types of enzyme, despite their different compositions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号