首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping
Authors:Misiaszek Richard  Crean Conor  Joffe Avrum  Geacintov Nicholas E  Shafirovich Vladimir
Institution:Chemistry Department and Radiation and Solid State Laboratory, New York University, New York, New York 10003-5180, USA.
Abstract:In living tissues under inflammatory conditions, superoxide radicals (O(2)*)) are generated and are known to cause oxidative DNA damage. However, the mechanisms of action are poorly understood. It is shown here that the combination of O(2)* with guanine neutral radicals, G(-H)* in single- or double-stranded oligodeoxyribonucleotides (rate constant of 4.7 +/- 1.0 x 10(8) m(-1) s(-1) in both cases), culminates in the formation of oxidatively modified guanine bases (major product, imidazolone; minor product, 8-oxo-7,8-dihydroguanine). The G(-H)* and O(2)* radicals were generated by intense 308 nm excimer laser pulses resulting in the one-electron oxidation and deprotonation of guanine in the 5'-d(CC2AP]-TCGCTACC) strands and the trapping of the ejected electrons by molecular oxygen (Shafirovich, V., Dourandin, A., Huang, W., Luneva, N. P., and Geacintov, N. E. (2000) Phys. Chem. Chem. Phys. 2, 4399-4408). The addition of Cu,Zn-superoxide dismutase, known to react rapidly with superoxide, dramatically enhances the life-times of guanine radicals from 4 to 7 ms to 0.2-0.6 s in the presence of 5 microm superoxide dismutase. Oxygen-18 isotope labeling experiments reveal two pathways of 8-oxo-7,8-dihydroguanine formation including either addition of O(2)* to the C-8 position of G(-H)* (in the presence of oxygen), or the hydration of G(-H)* (in the absence of oxygen). The formation of the guanine lesions via combination of guanine and superoxide radicals is greatly reduced in the presence of typical antioxidants such as trolox and catechol that rapidly regenerate guanine by the reductive "repair" of G(-H)* radicals. The mechanistic aspects of the radical reactions that either regenerate undamaged guanine in DNA or lead to oxidatively modified guanine bases are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号