首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The binding of terbium ions to gelsolin reveals two classes of metal ion binding sites.
Authors:R L Tellam
Institution:Department of Experimental Pathology, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
Abstract:Spectroscopically active terbium ions have been used to probe the Ca2+ ion-binding sites on human plasma gelsolin. The luminescence of Tb3+ ions bound to gelsolin is markedly enhanced when excited indirectly at 295 nm due to F?rster type dipole-dipole energy transfer from neighboring tryptophan residues. Titration of this luminescence with increasing concentrations of Tb3+ ions was saturable although the shape of this titration curve was complex indicating the involvement of multiple classes of sites. Luminescence lifetime measurements (obtained by indirect excitation at 295 nm) demonstrate the presence of two classes of sites characterized by a major lifetime of 1.0-1.1 ms and a minor lifetime of 0.7-0.8 ms. However, while the amplitude of the minor lifetime showed a hyperbolic dependence on the Tb3+ ion concentration, the amplitude of the major lifetime showed a strongly sigmoidal dependence. Different classes of Tb3+ ion binding sites can also be distinguished by the different Ca2+ ion concentrations needed to displace Tb3+ ions from these sites on gelsolin. It is proposed that the occupancy of one class of Tb3+ ion binding sites on gelsolin causes a conformational change in gelsolin which then allows a second class of cryptic Tb3+ ion binding sites to be expressed. The implications of these results in terms of the binding of Ca2+ ions to gelsolin and the regulation of the activities of gelsolin by calcium are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号