首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Colony expansion model for describing the spatial distribution of populations
Authors:K Yamamura
Institution:(1) Laboratory of Population Ecology, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba 305-8604, Japan Tel. +81-298-38-8313; Fax +81-298-38-8199 e-mail: yamamura@niaes.affrc.go.jp, JP
Abstract:Two equations have been used frequently to describe the relation between the sample variance (s 2) and sample mean (m) of the number of individuals per quadrat: Taylor's power law, s 2 = am b , and Iwao's m *m regression, s 2 = cm + dm 2, where a, b, c, and d are constants. We can obtain biological information such as colony size and the degree of aggregation of colonies from parameters c and d of Iwao's m *m regression. However, we cannot obtain such biological information from parameters a and b of Taylor's power law because these parameters have not been described by simple functions. To mitigate such in-convenience, I propose a mechanistic model that produces Taylor's power law; this model is called the colony expansion model. This model has the following two assumptions: (1) a population consists of a fixed number of colonies that lie across several quadrats, and (2) the number of individuals per unit occupied area of colony becomes v times larger in an allometric manner when the occupied area of colony becomes h times larger (v≥ 1, h≥ 1). The parameter h indicates the dispersal rate of organisms. We then obtain Taylor's power law with b = {lnE(h)] + lnE(v 2)]}/{lnE(h)] + lnE(v)]}, where E indicates the expectation. We can use the inverse of the exponent, 1/b, as an index of dispersal of individuals because it increases with increasing E(h). This model also yields a relation, known as the Kono–Sugino relation, between the proportion of occupied quadrats and the mean density per quadrat: −ln(1 −p) = fm g , where p is the proportion of occupied quadrats, f is a constant, and g = lnE(h)]/{lnE(h)] + lnE(v)]}. We can use g as an index of dispersal as it increases with increasing E(h). The problem at low densities where Taylor's power law is not applicable is also discussed. Received: January 27, 2000 / Accepted: June 20, 2000
Keywords:Taylor's power law  Iwao's m*−  m regression  Kono–  Sugino relation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号