首页 | 本学科首页   官方微博 | 高级检索  
     


Biofiltration of ethyl acetate and amyl acetate using a composite bead biofilter
Authors:Chan Wu-Chung  Su Mei-Qi
Affiliation:Civil Engineering Department, Chung-Hua University, Hsinchu 30067, Taiwan, ROC.
Abstract:Biodegradation kinetic behaviors of ethyl acetate and amyl acetate in a composite bead biofilter were investigated. The composite bead was the spherical PVA/peat/KNO(3)/GAC composite bead which was prepared in our previous works. Both microbial growth rate and biochemical reaction rate were inhibited at higher inlet concentration. For the microbial growth process, the microbial growth rate of ethyl acetate was greater than that of amyl acetate in the inlet concentration range of 100-400ppm. The degree of inhibitive effect was almost the same for ethyl acetate and amyl acetate in this concentration range. The half-saturation constant K(s) values of ethyl acetate and amyl acetate were 16.26 and 12.65ppm, respectively. The maximum reaction rate V(m) values of ethyl acetate and amyl acetate were 4.08 and 3.53gCh(-1)kg(-1) packed material, respectively. Zero-order kinetic with the diffusion limitation could be regarded as the most adequate biochemical reaction model. For the biochemical reaction process, the biochemical reaction rate of ethyl acetate was greater than that of amyl acetate in the inlet concentration range of 100-400ppm. The inhibitive effect for ethyl acetate was more pronounced than that for AA in this concentration range. The maximum elimination capacity of ethyl acetate and amyl acetate were 82.3 and 37.93gCh(-1)m(-3) bed volume, respectively. Ethyl acetate degraded by microbial was easier than amyl acetate did.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号