首页 | 本学科首页   官方微博 | 高级检索  
     


Site-directed mutagenesis establishes aspartic acids-227 and -342 as essential for enzyme activity in an isomalto-dextranase from Arthrobacter globiformis
Authors:Takashi Tochihara  Katsutomo Sasaki  Osamu Araki  Naoki Morimoto  Kenji Watanabe  Yuji Hatada  Susumu Ito  Hiroyuki Ito  Hirokazu Matsui
Affiliation:Department of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
Abstract:Isomalto-dextranase, from Arthrobacter globiformis T6, is a member of the glycoside hydrolase family 27. However, the alignments of the whole amino acid sequence are distinct from other members of this family. The enzymes cleave the glycosidic bond of the substrate in two different manners: either retaining or inverting the anomeric configuration. We believe that a retaining enzyme is involved in a two-step, double-displacement mechanism utilizing active site carboxylic acids as the nucleophile and general acid/base catalysts in the hydrolytic reaction. The critical amino acid residues at the isomalto-dextranase active site that catalyzes the hydrolysis reaction of dextran have been identified and the roles of nine amino acid residues (D107, D163, D227, D295, D340, D342, D373, D396, and E420) in the isomalto-dextranase from A. globiformis analyzed by site-directed mutagenesis. Of 15 mutant enzymes that were prepared, eight had reduced activities for dextran hydrolysis. Aspartic acids-227 and -342, which are part of the apparent catalytic dyad, were essential for hydrolase activity toward dextran.
Keywords:Arthrobacter globiformis T6  catalytic residue  dextran  isomalto-dextranase  site-directed mutagenesis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号