首页 | 本学科首页   官方微博 | 高级检索  
   检索      


N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus
Authors:Hodge A
Institution:Department of Biology, Area 2, The University of York, PO Box 373, York YO10 5YW, UK. ah29@york.ac.uk
Abstract:This study investigated N capture by Plantago lanceolata L. and Brassica napus L. from complex organic material (dual-labelled with 15N/13C) added either as a thin concentrated layer (discrete patch treatment) or dispersed uniformly with the background sand:soil mix in a 10 cm band (dispersed treatment) when grown in monoculture or in interspecific competition and in the presence or absence of a mycorrhizal inoculum (Glomus mosseae). No 13C enrichments from the organic material were detected in the plant tissues, but 15N enrichments were present. Total plant uptake of N from the organic material on a microcosm basis was not affected by the spatial placement of the organic material, but Plantago monocultures captured less N than the species in interspecific competition (i.e. 23% versus 38% of the N originally added). N capture from Brassica monocultures was no different to either Plantago monocultures or both species in mixture. However, N capture from the organic material by both individual Plantago and Brassica plants was reduced when grown with Brassica plants (by 10-fold and by more than half, respectively). N capture from the organic material was directly related to the estimated root length produced in the sections containing the organic material: the individual that produced the greatest root length captured most N. Strikingly, when the organic material was added as a discrete patch the N captured by Brassica, a non-mycorrhizal species, actually increased when the G. mosseae inoculum was present compared to when G. mosseae was absent (i.e. 35% versus 19% of the N originally added).
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号