首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Degradation of alpha-actin filaments in venous smooth muscle cells in response to mechanical stretch
Authors:Goldman Jeremy  Zhong Lin  Liu Shu Q
Institution:Biomedical Engineering Department, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3107, USA. jgo821@hecky.acns.nwu.edu
Abstract:Mechanical stretch has been shown to induce the degradation of alpha-actin filaments in smooth muscle cells (SMC) of experimental vein grafts. Here, we investigate the possible role of ERK1/2 and p38 MAPK in regulating this process using an ex vivo venous culture model that simulates an experimental vein graft. An exposure of a vein to arterial pressure induced a significant increase in the medial circumferential strain, which induced rapid alpha-actin filament disruption, followed by degradation. The percentage of SMC alpha-actin filament coverage was reduced significantly under arterial pressure (91 +/- 1%, 43 +/- 13%, 51 +/- 5%, 28 +/- 3%, and 19 +/- 5% at 1, 6, 12, 24, and 48 h, respectively), whereas it did not change significantly in specimens under venous pressure at theses times. The degradation of SMC alpha-actin filaments paralleled an increase in the relative activity of caspase 3 (3.0 +/- 0.7- and 1.7 +/- 0.4-fold increase relative to the control level at 6 and 12 h, respectively) and a decrease in SMC density (from the control level of 1,368 +/- 66 cells/mm(2) at time 0 to 1,205 +/- 90, 783 +/- 129, 845 +/- 61, 637 +/- 55, and 432 +/- 125 cells/mm(2) at 1, 6, 12, 24, and 48 h of exposure to arterial pressure, respectively). Treatment with a p38 MAPK inhibitor (SB-203580) significantly reduced the stretch-induced activation of caspase 3 at 6 h (from 3.0 +/- 0.7- to 2.2 +/- 0.3-fold) in conjunction with a significant rescue of alpha-actin filament degradation (from 43 +/- 13% to 69 +/- 15%) at the same time. Treatment with an inhibitor for the ERK1/2 activator (PD-98059), however, did not induce a significant change in the activity of caspase 3 or the percentage of SMC alpha-actin filament coverage. These results suggest that p38 MAPK and caspase 3 may mediate stretch-dependent degradation of alpha-actin filaments in vascular SMCs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号