首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recognition of 5-aminouracil (U(#)) in the central strand of a DNA triplex: orientation selective binding of different third strand bases
Authors:Rana V S  Ganesh K N
Institution:Division of Organic Chemistry (Synthesis), National Chemical Laboratory, Pune 411 008, India.
Abstract:A necessary feature of the natural base triads for triplex formation is the requirement of a purine (A or G) in the central position, since only these provide sets of two hydrogen bond donors/acceptors in the major groove of the double helix. Pyrimidine bases devoid of this feature have incompatible complementarity and lead to triplexes with lower stability. This paper demonstrates that 5-aminouracil (U#) (I), a pyrimidine nucleobase analogue of T in which 5-methyl is replaced by 5-amino group, with hydrogen bonding sites on both sides, is compatible in the central position of triplex triad X*U#·A, where X = A/G/C/T/2-aminopurine (AP), and * and · represent Hoogsteen and Watson–Crick hydrogen bonding patterns respectively. A novel recognition selectivity based on the orientation (parallel/antiparallel) of the third strand purines A, G or AP with A in the parallel motif (Ap*U#·A), and G/AP in the antiparallel motif (Gap/APap*U#·A) is observed. Similarly for pyrimidines in the third strand, C is accepted only in a parallel mode (Cp*U#·A). Significantly, T is recognised in both parallel and antiparallel modes (Tp/Tap*U#·A), with the antiparallel mode being stable compared to the parallel one. The ‘U#’ triplexes are also more stable than the corresponding control ‘T’ triplexes. The results expand the lexicon of triplex triads with a recognition motif consisting of pyrimidine in the central strand.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号