首页 | 本学科首页   官方微博 | 高级检索  
     


SSV1-encoded site-specific recombination system in Sulfolobus shibatae
Authors:Georgi Muskhelishvili   Peter Palm  Wolfram Zillig
Affiliation:(1) Max-Planck-Institut fur Biochemie, W-8033 Martinsried Munich, Germany
Abstract:Summary We present evidence for the existence of a conservative site-specific recombination system in Archaea by demonstrating integrative recombination of Sulfolobus shibatae virus SSV1 DNA with the host chromosome, catalysed by the SSVI-encoded integrase in vitro. The putative int gene of SSV1 was expressed in Escherichia coli yielding a protein of about 39 kDa. This protein alone efficiently recombined linear DNA substrates containing chromosomal (attA) and viral (attP) attachment sites; recombination with either negatively or positively supercoiled SSV1 DNA was less efficient. Intermolecular attA × attA and attP × attP recombination was also promoted by the SSV integrase. The invariant 44 by ldquocommon attachment corerdquo present in all att sites contained sufficient information to allow recombination, whilst the flanking sequences effected the efficiency. These features clearly distinguish the SSV1 — encoded site — specific recombination system from others and make it suitable for the study of regulatory mechanisms of SSV1 genome — host chromosome interaction and investigations of the evolution of the recombination machinery.
Keywords:SSV integrase  Archaea  Attachment site  Integration  Excision
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号