首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.
Authors:Tu  Cong  Ma  Lena Q.
Affiliation:(1) Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290, USA;(2) Present address: Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, USA
Abstract:Arsenate and phosphate interactions are important for better understanding their uptake and accumulation by plant due to their similarities in chemical behaviors. The present study examined the effects of arsenate and phosphate on plant biomass and uptake of arsenate and phosphate by Chinese brake (Pteris vittata L.), a newly-discovered arsenic hyperaccumulator. The plants were grown for 20 weeks in a soil, which received the combinations of 670, 2670, or 5340 mgrmol kg–1 arsenate and 800, 1600, or 3200 mgrmol kg–1 phosphate, respectively. Interactions between arsenate and phosphate influenced their availability in the soil, and thus plant growth and uptake of arsenate and phosphate. At low and medium arsenate levels (670 and 2670 mgrmol kg–1), phosphate had slight effects on arsenate uptake by and growth of Chinese brake. However, phosphate substantially increased plant biomass and arsenate accumulation by alleviating arsenate phytotoxicity at high arsenate levels (5340 mgrmol kg–1). Moderate doses of arsenate increased plant phosphate uptake, but decreased phosphate concentrations at high doses because of its phytotoxicity. Based on our results, the minimum P/As molar ratios should be at least 1.2 in soil solution or 1.0 in fern fronds for the growth of Chinese brake. Our findings suggest that phosphate application may be an important strategy for efficient use of Chinese brake to phytoremediate arsenic contaminated soils. Further study is needed on the mechanisms of interactive effects of arsenate and phosphate on Chinese brake in hydroponic systems.
Keywords:accumulation  arsenate  hyperaccumulator  interaction  phosphate  Pteris vittata L
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号