首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses
Authors:Dae Sung Kim  Hyong Woo Choi  Byung Kook Hwang
Institution:1. Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
2. The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
3. Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, New York, 14853-1801, USA
Abstract:

Main conclusion

Pepper CaMLO2 specifically interacts with CaCaM1 and translocates cytoplasmic CaCaM1 to the plasma membrane, leading to the suppression of Xanthomonas AvrBsT-triggered Ca 2+ influx, hypersensitive cell death and defense responses.

Abstract

Pathogen-induced cell death is closely linked with disease susceptibility and resistance in plants. Pepper (Capsicum annuum) mildew resistance locus O (CaMLO2) and calmodulin (CaCaM1) genes are required for disease-associated cell death and hypersensitive cell death, respectively. Here, we demonstrate that pathogen-responsive CaMLO2 interacts with CaCaM1 in yeast and in planta. Bimolecular fluorescence complementation and co-immunoprecipitation analyses confirm a specific interaction between CaMLO2 and CaCaM1 at the plasma membrane (PM) in plant cells. Subcellular localization analyses of CaCaM1 fused to green fluorescent protein reveals that treatment with Ca2+ and co-expression with CaMLO2 induce translocation of cytosolic CaCaM1 to the PM where CaMLO2 is localized. Transient CaMLO2 expression negatively regulates CaCaM1 accumulation in Nicotiana benthamiana. Xanthomonas avrBsT-triggered Ca2+ influx and hypersensitive cell death are disrupted by CaCaM1 and/or CaMLO2 expression. CaMLO2 silencing in pepper significantly enhances reactive oxygen species burst, cell death, and resistance responses to Xanthomonas campestris pv. vesicatoria Ds1 and Ds1 (avrBsT), which is accompanied by enhanced induction of CaCaM1, CaPR1 (PR-1), and CaPO2 (peroxidase). These results suggest that CaMLO2 interacts with CaCaM1 and suppresses AvrBsT-triggered cell death and defense responses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号