首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel regulation of membrane trafficking and dominant-negative effects by misrouted gonadotropin-releasing hormone receptor mutants
Authors:Knollman Paul E  Janovick Jo Ann  Brothers Shaun P  Conn P Michael
Affiliation:Division of Neuroscience and Reproductive Biology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
Abstract:Gonadotropin-releasing hormone (GnRH) receptor mutants from patients with hypogonadotropic hypogonadism are frequently misrouted proteins that exert a dominant-negative (DN) effect on human (h) wild-type (WT) receptor, due to oligomerization and retention in the endoplasmic reticulum. Pharmacologic chaperones restore correct folding, rescuing mutants and WT receptor from this oligomer. Rat WT retains the ability to oligomerize (since human and mouse mutants exert a DN effect on rat (r) WT sequence) but, unlike human or mouse, escapes the DN effect of GnRH receptor (Gn-RHR) mutants because rGnRHR mutants route to the plasma membrane with higher efficiency than mouse or human mutants. These distinct behaviors of mouse and rat GnRHRs (distinguished by only four semi- or non-conservative amino acid differences) led us to assess the role of each amino acid. The difference in both routing and the DN effect appears mediated primarily by Ser(216) in the rGnRHR. The homologous amino acid in the hGn-RHR is also Ser and is compensated for by the primate-unique insertion of Lys(191) that, alone, dramatically decreases routing of the receptor. These studies establish the relation between the DN effect and altered receptor trafficking and explain why hGnRHR is more susceptible to defective trafficking by disease-related point mutations than rodent counterparts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号