首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae
Authors:Schranz M Eric  Mitchell-Olds Thomas
Institution:Department of Genetics and Evolution, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany. eric.schranz@duke.edu
Abstract:Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was unique to members of the Brassicaceae, shared with the Cleomaceae, or an independent polyploidy event in each lineage. We isolated and sequenced three genomic regions from diploid Cleome spinosa (Cleomaceae) that are each homoeologous to a duplicated region shared between At3 and At5, centered on the paralogs of SEPALLATA (SEP) and CONSTANS (CO). Phylogenetic reconstructions and analysis of synonymous substitution rates support the hypothesis that a genomic triplication in Cleome occurred independently of and more recently than the duplication event in the Brassicaceae. There is a strong correlation in the copy number (single versus duplicate) of individual genes, suggesting functionally consistent influences operating on gene copy number in these two independently evolving lineages. However, the amount of gene loss in Cleome is greater than in Arabidopsis. The genome of C. spinosa is only 1.9 times the size of A. thaliana, enabling comparative genome analysis of separate but related polyploidy events.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号