Involvement of Nitric Oxide in Adenosine Release in the Developing and Adult Mouse Hippocampus |
| |
Authors: | Saransaari Pirjo Oja Simo S. |
| |
Affiliation: | Tampere Brain Research Center, Medical School, University of Tampere, Finland. blpisa@uta.fi |
| |
Abstract: | The novel type of neurotransmitter/neuromodulator nitric oxide (NO) is linked to activation of the N-methyl-D-aspartate (NMDA) class of glutamate receptors and has been shown to modify transmitter release in the brain. The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The effects of NO-generating compounds on the release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice were investigated, using a superfusion system, under normal conditions and in vitro ischemia. The release of adenosine was markedly potentiated at both ages by the NO-producing compounds S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and hydroxylamine. The evoked releases were reduced by the NO synthase inhibitors nitroarginine and 7-nitroindazole at both ages. They were also reduced by the inhibitor of soluble guanylyl cyclase 1H-(1,2,4-oxadiazolo(4,3a)quinoxalin-1-one (ODQ) in adults, indicating that the NO/cGMP pathway is involved in this release. Release of adenosine was also evoked when the cGMP levels were increased by superfusing slices with the phosphodiesterase inhibitor zaprinast. The markedly enhanced adenosine release under ischemic conditions was further potentiated by the ionotropic glutamate receptor agonists and NO-generating compounds, whereas zaprinast and ODQ had no effect, rendering unlikely the involvement of cGMP in the ischemic release. Moreover, NO was able to provoke substantial release of adenosine in the presence of NMDA under both normal and ischemic conditions, which could significantly add to the neuroprotective potential of this neuromodulator in both adult and developing hippocampus. |
| |
Keywords: | Adenosine release nitric oxide hippocampus slices development mouse |
本文献已被 PubMed SpringerLink 等数据库收录! |
|