首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thyroxine induces transitions in red muscle kinetics and steady swimming kinematics in rainbow trout (Oncorhynchus mykiss)
Authors:Coughlin D J  Forry J A  McGlinchey S M  Mitchell J  Saporetti K A  Stauffer K A
Institution:Widener University, Department of Biology, One University Place, Chester, PA 19013, USA. coughlin@pop1.science.widener.edu
Abstract:During normal development, rainbow trout undergo a shift in red muscle contraction kinetics and swimming kinematics. Young trout parr have faster muscle kinetics and faster tailbeat frequency during swimming than older, larger juvenile trout. In this study, the thyroid hormone thyroxine (T(4)) was used to induce these changes in trout parr. This allowed a comparison of swimming kinematics, through the use of video analysis and electromyography, and red muscle contractile properties, through the use of in vitro muscle preparations, between natural parr and same-sized induced juveniles. The red muscle of natural parr has faster contractile properties than induced juveniles, including faster twitch time and a faster maximum shortening velocity (V(max)). Further, natural parr swim with faster tailbeat frequencies than induced juveniles. The results suggest that the natural shift in red muscle contraction kinetics observed during parr-smolt transfomation in trout directly affects swimming behavior in these fish. Also, thyroid hormones appear to induce a shift towards slower isoforms of the muscle protein myosin heavy chain (MHC), a result distinct from work on rats where thyroid hormones induce shifts towards faster forms of MHC. J. Exp. Zool. 290:115-124, 2001.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号