首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acupuncture ameliorated skeletal muscle atrophy induced by hindlimb suspension in mice
Authors:Onda Akiko  Jiao Qibin  Nagano Yasuharu  Akimoto Takayuki  Miyamoto Toshikazu  Minamisawa Susumu  Fukubayashi Toru
Institution:aGraduate School of Sport Sciences, Waseda University, Tokyo, Japan;bGraduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan;cDepartment of Health and Sports, Niigata University of Health and Welfare;dCenter for Disease Biology and Integrative Medicine, The University of Tokyo, Japan;eGraduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
Abstract:Preventing skeletal muscle atrophy is critical for maintaining quality of life, but it is often a challenging goal for the elderly and patients with severe conditions. We hypothesized that acupuncture in place of exercise training is an alternative non-pharmacological intervention that can help to prevent muscle atrophy. To elucidate the effects of acupuncture on skeletal muscle atrophy caused by hindlimb suspension (HS), we performed acupuncture on mice according to two different methods: acupuncture with electrical stimulation (EA: electroacupuncture) and without electrical stimulation (MA: manual acupuncture). A needle was retained in the gastrocnemius muscle for 30 min every day for 2 weeks in the EA and MA groups. In the EA group, 30 min of repetitive electrical stimulation (1 Hz, 1 ms pulse width, 6.5 mA intensity) was also applied. HS significantly reduced muscle mass and the cross-sectional area of the soleus muscles. This HS-induced reduction was significantly improved in the EA group, although the level of improvement remained insufficient when compared with the control group. We found that the mRNA expression levels of atrogin-1 and MuRF1, which play a principal role in muscle-specific degradation as E3 ubiquitin ligases, were significantly increased in the HS group compared to the control group. EA and MA reduced the HS-induced upregulation of atrogin-1 (p < 0.01 in EA and MA) and MuRF1 (p < 0.01 in EA) mRNAs. We also found that the expression levels of PI3K, Akt1, TRPV4, adenosine A1 receptor, myostatin, and SIRT1 mRNAs tended to be increased by HS. EA and MA further increased the HS-induced upregulation of Akt1 (p < 0.05 in MA) and TRPV4 (p < 0.05 in MA) mRNAs. We concluded that acupuncture partially prevented skeletal muscle atrophy. This effect might be due to an increase in protein synthesis and a decrease in protein degradation.
Keywords:Electroacupuncture  Atrogin-1  MuRF1  Skeletal muscle atrophy  Proteolysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号