首页 | 本学科首页   官方微博 | 高级检索  
     


Identification and clarification of the role of key active site residues in bacterial glutathione S-transferase zeta/maleylpyruvate isomerase
Authors:Fang Ti  Li De-Feng  Zhou Ning-Yi
Affiliation:aKey Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;bNational Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Abstract:The maleylpyruvate isomerase NagL from Ralstonia sp. strain U2, which has been structurally characterized previously, catalyzes the isomerization of maleylpyruvate to fumarylpyruvate. It belongs to the class zeta glutathione S-transferases (GSTZs), part of the cytosolic GST family (cGSTs). In this study, site-directed mutagenesis was conducted to probe the functions of 13 putative active site residues. Steady-state kinetic information for mutants in the reduced glutathione (GSH) binding site, suggested that (a) Gln64 and Asp102 interact directly with the glutamyl moiety of glutathione, (b) Gln49 and Gln64 are involved in a potential electron-sharing network that influences the ionization of the GSH thiol. The information also suggests that (c) His38, Asn108 and Arg109 interact with the GSH glycine moiety, (d) His104 has a role in the ionization of the GSH sulfur and the stabilization of the maleyl terminal carboxyl group in the reaction intermediate and (e) Arg110 influences the electron distribution in the active site and therefore the ionization of the GSH thiolate. Kinetic data for mutants altered in the substrate-binding site imply that (a) Arg8 and Arg176 are critical for maleylpyruvate orientation and enolization, and (b) Arg109 (exclusive to NagL) participates in kcat regulation. Surprisingly, the T11A mutant had a decreased GSH Km value, whereas little impact on maleylpyruvate kinetics was observed, suggesting that this residue plays an important role in GSH binding. An evolutionary trend in this residue appears to have developed not only in prokaryotic and eukaryotic GSTZs, but also among the wider class of cGSTs.
Keywords:Abbreviations: cGST, cytosolic GST   DCEG, dicarboxyethyl-glutathione   GST, glutathione S-transferase   GSTZs, class zeta glutathione S-transferases   GSH, reduced glutathione
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号