首页 | 本学科首页   官方微博 | 高级检索  
     


The displacement of copper by iron at the specific binding sites of ovotransferrin
Authors:X X Chen  N Fas  G W Bates
Affiliation:Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843.
Abstract:We have examined the kinetics and mechanism by which iron can displace copper at the specific metal-binding sites of ovotransferrin. Fe2+ was added to Cu2+-ovotransferrin-CO3(2-) in the presence of NaHCO3 and ambient O2. The reaction has been followed by standard and stopped-flow spectrophotometry, EPR spectroscopy and analysis of chromogen-reactive Fe2+. The reaction is best described as triphasic. An initial jump in absorbance takes place in the first 2 s. In the next minute there is a further increase in absorbance and shift in the spectral maximum from 440 to 446 nm. The third phase is complex. The bulk of the spectrophotometric change, a decrease in absorbance with a shift to a maximum of 453 nm, lasts approx. 3 min. Minor spectral and EPR changes, however, take place over the next several hours. Chromogenic analysis of Fe2+ indicates that approx. 1 min is required to oxidize the Fe2+. EPR spectra reveal the formation of an Fe3+-ovotransferrin complex within the first 20 s; however, this lacks the characteristic doublet of specific Fe3+-ovotransferrin-CO3(2-). The simultaneous presence of specific Cu2+-ovotransferrin-CO3(2-) and Fe3+-ovotransferrin-CO3(2-) signals suggests a period in which the protein specifically binds both metal ions perhaps resulting from a differential reactivity of the two metal-binding sites. The addition of Cu(NO3)2 to Fe3+-ovotransferrin-CO3(2-) resulted in a complex with specific Fe3+ and non-specific Cu2+. The EPR spectrum of this complex and the final product of our displacement reaction were virtually identical. Distinct parallels in reaction of Cu2+-ovotransferrin-CO3(2-) with Fe(NH4)2(SO4)2, Fe(NO3)3 and Fe3+-nitrilotriacetic acid were observed. A reaction sequence involving the binding and oxidation of non-specific Fe2+ followed by Cu2+ displacement by Fe3+ at the specific sites and binding of non-specific Cu2+ is suggested.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号