首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide activation of soluble guanylyl cyclase reveals high and low affinity sites that mediate allosteric inhibition by calcium
Authors:Kazerounian Shiva  Pitari Giovanni M  Ruiz-Stewart Inez  Schulz Stephanie  Waldman Scott A
Institution:Division of Clinical Pharmacology, Department of Medicine and Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Abstract:Cyclic GMP (cGMP) and Ca(2+) regulate opposing mechanisms in (patho)physiological processes reflected in the reciprocal regulation of their intracellular concentrations. Although mechanisms by which cGMP regulates Ca(2+)](i) have been described, those by which Ca(2+) regulates cGMP](i) are less well understood. In the present study, Ca(2+) inhibited purified sGC activated by sodium nitroprusside (SNP), a precursor of nitric oxide (NO), employing Mg-GTP as substrate in a concentration-dependent fashion, but was without effect on basal enzyme activity. Ca(2+) inhibited sGC stimulated by protoporphyrin IX or YC-1 suggesting that inhibition was not NO-dependent. In contrast, Ca(2+) was without effect on sGC activated by SNP employing Mn-GTP as substrate, demonstrating that inhibition did not reflect displacement of heme from sGC. Ligand activation of sGC unmasked negative allosteric sites of high (K(i) similar 10(-7) M) and low (K(i) approximately 10(-5) M) affinity for Ca(2+) that mediated noncompetitive and uncompetitive inhibition, respectively. Free Mg(2+) in excess of substrate did not alter the concentration-response relationship of Ca(2+) inhibition at high affinity sites, but produced a rightward shift in that relationship at low affinity sites. Similarly, Ca(2+) inhibition at high affinity sites was noncompetitive, whereas inhibition at low affinity sites was competitive, with respect to free Mg(2+). Purified sGC specifically bound (45)Ca(2+) in the presence of a 1000-fold excess of Mg(2+) and in the absence of activating ligands. These data suggest that sGC is a constitutive Ca(2+) binding protein whose allosteric function is conditionally dependent upon ligand activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号