首页 | 本学科首页   官方微博 | 高级检索  
     


Reconstructing community relationships: the impact of sampling error, ordination approach, and gradient length
Authors:Claire N. Hirst   Donald A. Jackson
Affiliation:Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
Abstract:Effectively summarizing complex community relationships is an important feature in studies such as biodiversity, global change, and invasion ecology. The reliability of such community summaries depends on the degree of sampling variability that is present in the data, the structure of the data, and the choice of ordination method, but the relative importance of these factors is not understood. We compared the validity of results from different ordination methods by applying five levels of sampling error to a simulated coenoplane model at two gradient lengths using two types of data (abundance and presence–absence). The multivariate methods we compared were correspondence analysis (CA), detrended correspondence analysis (DCA), non-metric multidimensional scaling (NMDS), principal component analysis (PCA) and principal coordinates analysis (PCoA). Our results showed CA and PCA using presence–absence data were the most successful methods regardless of sampling error and gradient length, closely followed by the other methods using presence–absence data. With abundance data, PCA and CA were the most successful approaches with the short and long gradients, respectively. Approaches based on PCoA and NMDS using abundance data did not perform well regardless of the choice of distance measure used in the analysis. Both of these methods, along with the PCA using abundance data, were strongly affected by the longer gradient, leading to more distorted results.
Keywords:Community ecology    gradient length    multivariate statistics    ordination    sampling error
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号