首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage
Authors:Viallat A  Dalous J  Abkarian M
Institution:Laboratoire de Spectrométrie Physique, Université J. Fourier, Saint Martin d'Hères, France. viallat@spectro.ujf-grenoble.fr
Abstract:We report the properties of giant lipid vesicles enclosing an agarose gel. In this system, the lipid bilayer retains some basic properties of biological membranes and the internal fluid exhibits viscoelastic properties, thus permitting us to address the question of the deformation of a cell membrane in relation to the mechanical properties of its cytoskeleton. The agarose gel (concentration c0gel = 0.07%, 0.18%, 0.36%, and 1% w/w), likely not anchored to the membrane, confers to the internal volume elastic moduli in the range of 10-10(4) Pa. Shapes and kinetics of de-swelling of gel-filled and aqueous solution-filled vesicles are compared upon either a progressive or a fast osmotic shrinkage. Both systems exhibit similar kinetics. Shapes of solution-filled vesicles are well described using the area difference elasticity model, whereas gel-filled vesicles present original patterns: facets, bumps, spikes (c0gel < 0.36%), or wrinkles (c0gel > or = 0.36%). These shapes partially vanish upon re-swelling, and some of them are reminiscent of echinocytic shapes of erythrocytes. Their characteristic size (microns) decreases upon increasing c0gel. A possible origin of these patterns, relying on the formation of a dense impermeable gel layer at the vesicle surface and associated with a transition toward a collapsed gel phase, is advanced.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号