首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Noncatalytic Domain of Glycogen Synthase Kinase-3 (GSK-3) Is Essential for Activity
Authors:Jessica L Buescher and  Christopher J Phiel
Institution:From the Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio 43210 and ;the §Center for Molecular and Human Genetics, The Research Institute at Nationwide Children''s Hospital, Columbus, Ohio 43205
Abstract:Glycogen synthase kinase-3 (GSK-3) isoforms, GSK-3α and GSK-3β, are serine/threonine kinases involved in numerous cellular processes and diverse diseases, including Alzheimer disease, cancer, and diabetes. GSK-3 isoforms function redundantly in some settings, while, in others, they exhibit distinct activities. Despite intensive investigation into the physiological roles of GSK-3 isoforms, the basis for their differential activities remains unresolved. A more comprehensive understanding of the mechanistic basis for GSK-3 isoform-specific functions could lead to the development of isoform-specific inhibitors. Here, we describe a structure-function analysis of GSK-3α and GSK-3β in mammalian cells. We deleted the noncatalytic N and C termini in both GSK-3 isoforms and generated point mutations of key regulatory residues. We examined the effect of these mutations on GSK-3 activity toward Tau, activity in Wnt signaling, interaction with Axin, and GSK-3α/β Tyr279/216 phosphorylation. We found that the N termini of both GSK-3 isoforms were dispensable, whereas progressive C-terminal deletions resulted in protein misfolding exhibited by deficient activity, impaired ability to interact with Axin, and a loss of Tyr279/216 phosphorylation. Our data predict that small molecules targeting the divergent C terminus may lead to isoform-specific GSK-3 inhibition through destabilization of the GSK-3 structure.
Keywords:Enzyme Structure  Neurodegeneration  Phosphorylation Enzymes  Signal Transduction  Wnt Pathway
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号