首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Amino Acid Architecture That Influences dNTP Insertion Efficiency in Y-Family DNA Polymerase V of E. coli
Authors:Kwang Young Seo  Prashant Donthamsetti
Institution:Biology Department, Boston University, Boston, MA 02215, USA
Abstract:Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as + ta]-Ba]P-N2-dG, which is the major adduct of the potent mutagen/carcinogen benzoa]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite + ta]-Ba]P-N2-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the “roof-amino acid” (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single + ta]-Ba]P-N2-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose β-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the roof-aa/next amino acid]: one class has isoleucine/alanine] and includes UmuC(V) and DNAP η (from many species), while the second class has alanine (or serine)/threonine] and includes DNAP IV, DNAP κ (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/η class to the IV/κ class with respect to the roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.
Keywords:B[a]P  benzo[a]pyrene  (+)-anti-B[a]PDE  7R  8S-dihydroxy-9S  10R-epoxy-7  8  9  10-tetrahydrobenzo[a]pyrene  [+   ta]-B[a]P-N2-dG  the major adduct of (+)-anti-B[a]PDE  formed by trans addition of N2-dG to (+)-anti-B[a]PDE    BP-TGC-ssM13  a ss-M13 vector containing a single +   BP adduct in a 5&prime  GC sequence context" target="_blank">-TGC sequence context  C-ssM13  a ss-M13 vector containing a dG at the position equivalent to +   BP in +   BP-TGC-ssM13  PAH  polycyclic aromatic hydrocarbon  DNAP  DNA polymerase  UmuC(V)  polymerase subunit of DNAP V  MF  mutation frequency  TLS  translesion synthesis  dNTP  deoxynucleotide triphosphate  dCTP  deoxycytidine triphosphate  aa  amino acid  roof+1-aa  the amino acid lying above the nucleobase of the dNTP in a Y-family DNAP  roof     1-aa  the amino acid that follows the roof-aa  wt  wild type  PBS  phosphate-buffered saline  CPD  cyclopyrimidine dimer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号