首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unfolding energetics and conformational stability of DLC8 monomer
Authors:Krishna Mohan P M
Institution:Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India. mohanpmk@tifr.res.in
Abstract:To understand the rules governing the protein folding process it is essential to study the stability and unfolding of small monomeric proteins. Here, I present the pH dependent thermal unfolding energetics and conformational stability analysis of monomeric Dynein light chain protein (DLC8) in the pH range 3.5-2.0. DLC8 is the smallest and the most conserved light chain among the light chains of the dynein motor assembly. Thermal unfolding of DLC8 monomer is much complex with the presence of transient intermediates, which is in contrast to the notion that small proteins unfold via simple two-state process. The unfolding seems to be more cooperative at lower pH and the temperature of highest conformational stability (T(s)) is found to be maximum (295.7 K) at pH 2.76. Stability curves have been simulated to understand the thermodynamic parameters that govern the shapes of the experimentally obtained curves. Further, an effort has been made to correlate the observed differences in the denaturation energetics with the protein sequence in order to throw light on the structure-folding paradigm of the DLC8 monomer.
Keywords:Dynein light chain protein  Circular dichroism  Thermal adaptability  Conformational stability  Heat capacity changes  Protein folding
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号