首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemistry and structure of the glycan secreted by desiccation-tolerantNostoc commune (Cyanobacteria)
Authors:Donna R. Hill  A. Peat  M. Potts
Affiliation:(1) Department of Biochemistry, Virginia Polytechnic Institute and State University, 24061-0308 Blacksburg, VA, USA;(2) Present address: Phylaroque, France
Abstract:Summary Filaments of the desiccation-tolerant cyanobacteriumNostoc commune are embedded within, and distributed throughout, a dense glycan sheath. Analysis of the glycan of field materials and of pure cultures ofN. commune DRH 1 through light and electron microscopy, immunogold labelling and staining with dyes, revealed changes in the pattern of differentiation in glycan micro-structure, as well as localized shifts in pH, upon rehydration of desiccated field material. A Ca/Si rich external (pellicular) layer of the glycan acts as a physical barrier to epiphytic bacteria on the surface ofN. commune colonies. A purified fraction (>12 kDa) of an aqueous extract of the glycan from desiccated field material contained glucose, N-acetylglucosamine, glucosamine, mannose, and galactosamine with ratios of 3.1ratio1.4ratio1ratio0.1ratio0.06, respectively. Lipid soluble extracts ofN. commune contained trehalose and sucrose and the levels of both became undetectable following cell rehydration. Intracellular cyanobacterial trehalase was identified using immunoblotting and its synthesis was detected upon rehydration of desiccated field cultures. Elemental analysis of glycan extracts showed a flux in the concentrations of salts in the glycan matrix following rehydration of desiccated colonies. Water-stress proteins (Wsp; most abundant proteins in glycan), a water soluble UV-A/B-absorbing pigment, the lipid-soluble UV-protective pigment scytonemin (in both its oxidized and reduced forms), as well as two unidentified cyanobacterial glycoproteins (75 kDa and 110 kDa), were found within the glycan matrix. An unidentified 68 kDa protein, the second most abundant protein in aqueous extracts of the glycan, was isolated and its N-terminal sequence was determined as AFIFGTISPNNLSGTSGNSGIVGSA. Gene bank searches with this sequence identified significant homologies (35–45%) with various carbohydrate-modifying enzymes. The role of the glycan in the desiccation tolerance ofN. commune is discussed with respect to structure/function relationships.Abbreviations EPS extracellular polysaccharides - Wsp water-stress protein - SEM scanning electron microscopy - TEM transmission electron microscopy - EDX energy dispersive X-ray analysis - FPLC fast performance liquid chromatography - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - TLC thin layer chromatography - UV ultra-violet radiation - UTEX University of Texas Culture Collection
Keywords:UV-absorbing pigments  Protein secretion  Capsule  Glycoproteins  Trehalose
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号