首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies on ouabain-complexed (Na+ +K+)-ATPase carried out with vanadate
Authors:O Hansen
Abstract:Vanadate is able to promote the binding of ouabain to (Na+ +K+)-ATPase and it is shown that vanadate is trapped in the enzyme-ouabain complex. Also ouabain-bound enzyme, the formation of which was facilitated by (Mg2+ +Na+ +ATP) or (Mg2+ +Pi), is accessible to vanadate when washed free of competing ligands used for the promotion of ouabain binding. For vanadate binding to (Na+ +K+)-ATPase and to enzyme-ouabain complexes a divalent cation (Mg2+ or Mn2+) is indispensable, indicating that the cation does not remain attached to the ouabain-bound enzyme. K+ further increases vanadate binding in the absence of ouabain, but seems to have no additional role in case of vanadate binding to enzyme-ouabain complexes. Mn2+ is more efficient than Mg2+ in promoting binding of vanadate and ouabain to (Na+ +K+)-ATPase. That K+ in combination with Mn2+, in analogy with the effect in combination with Mg2+, increases the equilibrium binding level of vanadate and decreases that of ouabain does not seem to favour the hypothesis of selection of a special E2-subconformation by Mn2+. The vanadate-trapped enzyme-ouabain complex was examined for simultaneous nucleotide binding which could demonstrate a two-substrate mechanism per functional unit of the enzyme. The acceleration by (Na+ +ATP) of ouabain release from the (Mg2+ +Pi)-facilitated enzyme-ouabain complex does not, as anticipated, support such a mechanism. On the other hand, the deceleration of vanadate release as well as of ouabain release from a (Mg2+ +vanadate)-promoted complex could be consistent with a two-substrate mechanism working out-of-phase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号