首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting microRNA-disease association based on microRNA structural and functional similarity network
Authors:Tao Ding  Jie Gao  Shanshan Zhu  Junhua Xu  Min Wu
Affiliation:1. School of Science, Jiangnan University, Wuxi 214122, China2. School of Mathematics Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
Abstract:Background: Increasing evidences indicate that microRNAs (miRNAs) are functionally related to the development and progression of various human diseases. Inferring disease-related miRNAs can be helpful in promoting disease biomarker detection for the treatment, diagnosis, and prevention of complex diseases. Methods: To improve the prediction accuracy of miRNA-disease association and capture more potential disease-related miRNAs, we constructed a precise miRNA global similarity network (MSFSN) via calculating the miRNA similarity based on secondary structures, families, and functions. Results: We tested the network on the classical algorithms: WBSMDA and RWRMDA through the method of leave-one-out cross-validation. Eventually, AUCs of 0.8212 and 0.9657 are obtained, respectively. Also, the proposed MSFSN is applied to three cancers for breast neoplasms, hepatocellular carcinoma, and prostate neoplasms. Consequently, 82%, 76%, and 82% of the top 50 potential miRNAs for these diseases are respectively validated by the miRNA-disease associations database miR2Disease and oncomiRDB. Conclusion: Therefore, MSFSN provides a novel miRNA similarity network combining precise function network with global structure network of miRNAs to predict the associations between miRNAs and diseases in various models.
Keywords:miRNAs   hairpin structure,miRNA families,functional similarity,disease semantic,leave-one-out cross-validation,
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号