首页 | 本学科首页   官方微博 | 高级检索  
     


Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network
Authors:Wen Yang  Xia Wang  Kenan Li  Yuanru Liu  Ying Liu  Rui Wang  Honglin Li
Affiliation:1. Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China2. BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
Abstract:Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.
Keywords:arachidonic acid  metabolic network  computational model  anti-inflammation  natural product  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号