首页 | 本学科首页   官方微博 | 高级检索  
   检索      


miR‐183 and miR‐96 orchestrate both glucose and fat utilization in skeletal muscle
Authors:Hui Wang  Mei Ma  Yuying Li  Jinxin Liu  Chao Sun  Shengnan Liu  Yiruo Ma  Ying Yan  Zhili Tang  Siyi Shen  Jing Yu  Yuting Wu  Jingjing Jiang  Li Wang  Zi&#x;Bing Jin  Hao Ying  Yan Li
Abstract:Our knowledge of the coordination of fuel usage in skeletal muscle is incomplete. Whether and how microRNAs are involved in the substrate selection for oxidation is largely unknown. Here we show that mice lacking miR‐183 and miR‐96 have enhanced muscle oxidative phenotype and altered glucose/lipid homeostasis. Moreover, loss of miR‐183 and miR‐96 results in a shift in substrate utilization toward fat relative to carbohydrates in mice. Mechanistically, loss of miR‐183 and miR‐96 suppresses glucose utilization in skeletal muscle by increasing PDHA1 phosphorylation via targeting FoxO1 and PDK4. On the other hand, loss of miR‐183 and miR‐96 promotes fat usage in skeletal muscle by enhancing intramuscular lipolysis via targeting FoxO1 and ATGL. Thus, our study establishes miR‐183 and miR‐96 as master coordinators of fuel selection and metabolic homeostasis owing to their capability of modulating both glucose utilization and fat catabolism. Lastly, we show that loss of miR‐183 and miR‐96 can alleviate obesity and improve glucose metabolism in high‐fat diet‐induced mice, suggesting that miR‐183 and miR‐96 may serve as therapeutic targets for metabolic diseases.
Keywords:fuel metabolism  lipolysis  metabolic flexibility  miR‐  183/96  skeletal muscle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号