首页 | 本学科首页   官方微博 | 高级检索  
     


Plasma membrane potential oscillations in insulin secreting Ins-1 832/13 cells do not require glycolysis and are not initiated by fluctuations in mitochondrial bioenergetics
Authors:Goehring Isabel  Gerencser Akos A  Schmidt Sara  Brand Martin D  Mulder Hindrik  Nicholls David G
Affiliation:From the Lund University Diabetes Centre, 20502 Malmö, Sweden and ;the §Buck Institute for Research on Aging, Novato, California 94945
Abstract:Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic β-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluorescence to investigate the role of mitochondria in the generation of plasma membrane potential oscillations in clonal INS-1 832/13 β-cells. Elevated glucose caused oscillations in plasma membrane potential and cytoplasmic free Ca(2+) concentration over the same concentration range required for insulin release, although considerable cell-to-cell heterogeneity was observed. Exogenous pyruvate was as effective as glucose in inducing oscillations, both in the presence and absence of 2.8 mM glucose. Increased glucose and pyruvate each produced a concentration-dependent mitochondrial hyperpolarization. The causal relationships between pairs of parameters (Δψ(p) and [Ca(2+)](c), Δψ(p) and NAD(P)H, matrix ATP and [Ca(2+)](c), and Δψ(m) and [Ca(2+)](c)) were investigated at single cell level. It is concluded that, in these β-cells, depolarizing oscillations in Δψ(p) are not initiated by mitochondrial bioenergetic changes. Instead, regardless of substrate, it appears that the mitochondria may simply be required to exceed a critical bioenergetic threshold to allow release of insulin. Once this threshold is exceeded, an autonomous Δψ(p) oscillatory mechanism is initiated.
Keywords:Calcium Imaging   Confocal Microscopy   Diabetes   Glucose   Mitochondria   Pyruvate   ATP   NAD(P)H   Clonal β Cells   Oscillations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号