首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural characterization of the nickel-binding properties of Bacillus pasteurii urease accessory protein (Ure)E in solution
Authors:Won Hyung-Sik  Lee Yeon-Hee  Kim Ji-Hun  Shin In Seon  Lee Mann Hyung  Lee Bong-Jin
Institution:National Research Laboratory for Membrane Protein Structure, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.
Abstract:Urease activation is critical to the virulence of many human and animal pathogens. Urease possesses multiple, nickel-containing active sites, and UreE, the only nickel-binding protein among the urease accessory proteins, activates urease by transporting nickel ions. We performed NMR experiments to investigate the solution structure and the nickel-binding properties of Bacillus pasteurii (Bp) UreE. The secondary structures and global folds of BpUreE were determined for its metal-free and nickel-bound forms. The results indicated that no major structural change of BpUreE arises from the nickel binding. In addition to the previously identified nickel-binding site (Gly(97)-Cys(103)), the C-terminal tail region (Lys(141)-His(147)) was confirmed for the first time to be involved in the nickel binding. The C-terminally conserved sequence ((144)GHQH(147)) was confirmed to have an inherent nickel-binding ability. Nickel addition to 1.6 mm subunit, a concentration where BpUreE predominantly forms a tetramer upon the nickel binding, induced a biphasic spectral change consistent with binding of up to at least three nickel ions per tetrameric unit. In contrast, nickel addition to 0.1 mm subunit, a concentration at which the protein is primarily a dimer, caused a monophasic spectral change consistent with more than 1 equivalent per dimeric unit. Combined with the equilibrium dialysis results, which indicated 2.5 nickel equivalents binding per dimer at a micromolar protein concentration, the nickel-binding stoichiometry of BpUreE at a physiological concentration could be three nickel ions per dimer. Altogether, the present results provide the first detailed structural data concerning the nickel-binding properties of intact, wild-type BpUreE in solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号