首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of non-aqueous solvents on CO2 absorption in monoethanolamine: Ab initio calculations
Authors:Tingting Zhang  Yunsong Yu
Institution:State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, P.R. China
Abstract:Monoethanolamine (MEA) is the most typical alkanolamine and its aqueous solutions are widely used for CO2 absorption with mature technology, but the regeneration process is energy consuming. To reduce the energy demand, non-aqueous solvents, such as methanol and ethanol are proposed to substitute water in amine solutions. To understand the influence of the aqueous and non-aqueous solvents on CO2 capture process, the chemical reactions of MEA absorbing CO2 were conducted via ab initio calculations. The non-aqueous solvents discussed in this paper are methanol, ethanol, 1-propanol and 2-propanol. The reaction patterns were investigated and energy barriers were observed. The results show that zwitterion formation and the followed intermolecular hydrogen transfer are proven to be the most possible reaction pattern in both aqueous and non-aqueous solvents. The energy analysis shows that the forward reaction energy barriers increase while the backward barriers decrease as the solvent changes from water to methanol, ethanol, 1-propanol and 2-propanol in turn. The decreases of the energy barriers for backward processes are much higher than the corresponding increases for forward processes. These results indicate that lower energies are required in non-aqueous solvents than in water during the desorption reactions and the non-aqueous solvents are very promising to reduce the regeneration energy consumption in MEA capturing CO2 process. Moreover, the reaction energy gaps between different solvation effects were found to have linear relationship with the logarithm of the dielectric constant difference, which could provide an easy way to theoretically predict the reaction energies of monoethanolamine absorbing CO2 in other solvation effect and can be used to screen appropriate CO2 capture solvent.
Keywords:CO2 absorption  non-aqueous solvation effect  molecular simulation  energy gaps  dielectric constant
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号