首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and dynamical properties predicted by reactive force fields simulations for four common pure fluids at liquid and gaseous non-reactive conditions
Authors:Tran Thi Bao Le  David R Cole
Institution:1. Department of Chemical Engineering, University College London, London, UK;2. School of Earth Sciences, Ohio State University, Columbus, OH, USA
Abstract:Four common pure fluids were chosen to elucidate the reliability of reactive force fields in estimating bulk properties of selected molecular systems: CH4, H2O, CO2 and H2. The pure fluids are not expected to undergo chemical reactions at the conditions chosen for these simulations. The ‘combustion’ ReaxFF was chosen as reactive force field. In the case of water, we also considered the ‘aqueous’ ReaxFF model. The results were compared to data obtained implementing popular classic force fields. In the gas phase, it was found that simulations conducted using the ‘combustion’ ReaxFF formalism yield structural properties in reasonable good agreement with classic simulations for CO2 and H2, but not for CH4 and H2O. In the liquid phase, ‘combustion’ ReaxFF simulations reproduce reasonably well the structure obtained from classic simulations for CH4, degrade for CO2 and H2, and are rather poor for H2O. In the gas phase, the simulation results are compared to experimental second virial coefficient data. The ‘combustion’ ReaxFF simulations yield second virial coefficients that are not sufficiently negative for CH4 and CO2, and slightly too negative for H2. The ‘combustion’ ReaxFF parameterisation induces too strong an effective attraction between water molecules, while the ‘aqueous’ ReaxFF yields a second virial coefficient that is in reasonable agreement with experiments. The ‘combustion’ ReaxFF parameterisation yields acceptable self-diffusion coefficients for gas-phase properties of CH4, CO2 and H2. In the liquid phase, the results are good for CO2, while the self-diffusion coefficient predicted for liquid CH4 is slower, and that predicted for liquid H2 is about nine times faster than those expected based on classic simulations. The ‘aqueous’ ReaxFF parameterisation yields good results for both the structure and the diffusion of both liquid and vapour water.
Keywords:Self-diffusion coefficient  radial distribution function  bulk fluids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号