首页 | 本学科首页   官方微博 | 高级检索  
     


Thermostable xylanase inhibits and disassembles Pseudomonas aeruginosa biofilms
Authors:Jin-Hyung Lee  Yong-Guy Kim
Affiliation:School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
Abstract:Pseudomonas aeruginosa biofilms are problematic and play a critical role in the persistence of chronic infections because of their ability to tolerate antimicrobial agents. In this study, various cell-wall degrading enzymes were investigated for their ability to inhibit biofilm formation of two P. aeruginosa strains, PAO1 and PA14. Xylanase markedly inhibited and detached P. aeruginosa biofilms without affecting planktonic growth. Xylanase treatment broke down extracellular polymeric substances and decreased the viscosity of P. aeruginosa strains. However, xylanase treatment did not change the production of pyochelin, pyocyanin, pyoverdine, the Pseudomonas quinolone signal, or rhamnolipid. In addition, the anti-biofilm activity of xylanase was thermally stable for > 100 days at 45°C. Also, xylanase showed anti-biofilm activity against one methicillin-resistance Staphylococcus aureus and two Escherichia coli strains.
Keywords:Biofilm formation  extracellular polymeric substance  Pseudomonas aeruginosa  viscosity  xylanase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号