首页 | 本学科首页   官方微博 | 高级检索  
     


The structure of a doripenem‐bound OXA‐51 class D β‐lactamase variant with enhanced carbapenemase activity
Authors:Cynthia M. June  Taylor J. Muckenthaler  Emma C. Schroder  Zachary L. Klamer  Zdzislaw Wawrzak  Rachel A. Powers  Agnieszka Szarecka  David A. Leonard
Affiliation:1. Department of Chemistry, Grand Valley State University, Allendale, Michigan;2. Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan;3. Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois
Abstract:OXA‐51 is a class D β‐lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA‐51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high‐resolution structures of apo OXA‐51 and OXA‐51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl‐intermediate. The structure shows that acyl‐doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA‐24/40 (doripenem) and OXA‐23 (meropenem). In the OXA‐51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA‐51. Similarly, in the OXA‐51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA‐51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA‐51 and OXA‐51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA‐51 variants.
Keywords:carbapenem  β  ‐lactamase  antibiotic resistance  crystal structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号