Effects of nonylphenol and phytoestrogen-enriched diet on plasma vitellogenin, steroid hormone, hepatic cytochrome P450 1A, and glutathione-S-transferase values in goldfish (Carassius auratus) |
| |
Authors: | Ishibashi Hiroshi Tachibana Katsuyasu Tsuchimoto Mutsuyosi Soyano Kiyoshi Tatarazako Norihisa Matsumura Naomi Tomiyasu Yuki Tominaga Nobuaki Arizono Koji |
| |
Affiliation: | Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan. |
| |
Abstract: | The effects of nonylphenol (NP) on plasma vitellogenin (VTG) and steroid hormone values, as well as hepatic cytochrome P450 1A (CYP1A) and glutathione-S-transferase (GST) activities, were measured in goldfish (Carassius auratus) fed a diet with a low (formulated diet, FD) or high (commercial diet, CD) content of phytoestrogens, including genistein and daidzein. Male goldfish with secondary sexual characteristics were exposed to nominal NP concentrations of 0.1, 1.0, 10, and 100 microg/L in the water for 28 days while being fed either the FD or CD diet at 1.0% of body weight daily. Plasma VTG concentration in male goldfish exposed to 100 microg of NP/L and fed FD was significantly higher than that in the FD-fed control fish at seven, 21, and 28 days. However, fish of the CD-fed group exposed to 100 microg of NP/ L had significantly higher plasma VTG concentration than did fish of the CD-fed control group at 28 days only. Moreover, plasma VTG concentration in fish of the CD-fed control group was about 100-fold higher than that in fish of the FD-fed control group. Although the estrogenic effects of a phytoestrogen-enriched diet caused a decrease in testosterone and/or 11-ketotestosterone values in the CD-fed fish, there was no dose-response relationship between androgen and amount of NP to which the FD-fed fish were exposed. Nonylphenol does not have appreciable effects on hepatic CYP1A and GST activities in male goldfish at concentrations as low as 100 microg/L. These results suggest that NP has estrogenic activity in male goldfish at the nominal concentration of 100 microg/L, and that phytoestrogens, such as genistein and daidzein, in the CD inhibit an aspect(s) of steroid release and/or synthesis common to testosterone and 11-ketotestosterone. However, results of in vivo screening assays for endocrine-disrupting chemicals may be seriously affected by phytoestrogens in the diet, depending on content or potency of estrogenic activity; therefore, we recommend use in research of a standardized, open-formula diet in which estrogenic substances have been reduced to amounts that do not alter the results of studies that are influenced by exogenous estrogens. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|