Abstract: | l ‐Theanine is a specialized metabolite in the tea (Camellia sinensis) plant which can constitute over 50% of the total amino acids. This makes an important contribution to tea functionality and quality, but the subcellular location and mechanism of biosynthesis of l ‐theanine are unclear. Here, we identified five distinct genes potentially capable of synthesizing l ‐theanine in tea. Using a nonaqueous fractionation method, we determined the subcellular distribution of l ‐theanine in tea shoots and roots and used transient expression in Nicotiana or Arabidopsis to investigate in vivo functions of l ‐theanine synthetase and also to determine the subcellular localization of fluorescent‐tagged proteins by confocal laser scanning microscopy. In tea root tissue, the cytosol was the main site of l ‐theanine biosynthesis, and cytosol‐located CsTSI was the key l ‐theanine synthase. In tea shoot tissue, l ‐theanine biosynthesis occurred mainly in the cytosol and chloroplasts and CsGS1.1 and CsGS2 were most likely the key l ‐theanine synthases. In addition, l ‐theanine content and distribution were affected by light in leaf tissue. These results enhance our knowledge of biochemistry and molecular biology of the biosynthesis of functional tea compounds. |