首页 | 本学科首页   官方微博 | 高级检索  
     


Intercellular communication via gap junctions affected by mechanical load in the bovine annulus fibrosus
Authors:Jane Desrochers
Affiliation:McCaig Institute for Bone and Joint Health, University of Calgary, CalgaryABCanadaT2N 1N4,
Abstract:Cells in the intervertebral disc, as in other connective tissues including tendon, ligament and bone, form interconnected cellular networks that are linked via functional gap junctions. These cellular networks may be necessary to affect a coordinated response to mechanical and environmental stimuli. Using confocal microscopy with fluorescence recovery after photobleaching methods, we explored the in situ strain environment of the outer annulus of an intact bovine disc and the effect of high-level flexion on gap junction signalling. The in situ strain environment in the extracellular matrix of the outer annulus under high flexion load was observed to be non-uniform with the extensive cellular processes remaining crimped sometimes at flexion angles greater than 25°. A significant transient disruption of intercellular communication via functional gap junctions was measured after 10 and 20 min under high flexion load. This study illustrates that in healthy annulus fibrosus tissue, high mechanical loads can impede the functioning of the gap junctions. Future studies will explore more complex loading conditions to determine whether losses in intercellular communication can be permanent and whether gap junctions in aged and degenerated tissues become more susceptible to load. The current research suggests that cellular structures such as gap junctions and intercellular networks, as well as other cell–cell and cell–matrix interconnections, need to be considered in computational models in order to fully understand how macroscale mechanical signals are transmitted across scales to the microscale and ultimately into a cellular biosynthetic response in collagenous tissues.
Keywords:intervertebral disc  micromechanics  gap junctions  intercellular communication  confocal microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号