首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EMG-force modeling using parallel cascade identification
Authors:Hashemi Javad  Morin Evelyn  Mousavi Parvin  Mountjoy Katherine  Hashtrudi-Zaad Keyvan
Institution:Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, Canada.
Abstract:Measuring force production in muscles is important for many applications such as gait analysis, medical rehabilitation, and human-machine interaction. Substantial research has focused on finding signal processing and modeling techniques which give accurate estimates of muscle force from the surface-recorded electromyogram (EMG). The proposed methods often do not capture both the nonlinearities and dynamic components of the EMG-force relation. In this study, parallel cascade identification (PCI) is used as a dynamic estimation tool to map surface EMG recordings from upper-arm muscles to the induced force at the wrist. PCI mapping involves generating a parallel connection of a series of linear dynamic and nonlinear static blocks. The PCI model parameters were initialized to obtain the best force prediction. A comparison between PCI and a previously published Hill-based orthogonalization scheme, that captures physiological behaviour of the muscles, has shown 44% improvement in force prediction by PCI (averaged over all subjects in relative-mean-square sense). The improved performance is attributed to the structural capability of PCI to capture nonlinear dynamic effects in the generated force.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号