首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cyclic AMP-mediated regulation of striatal glutamate release: interactions of presynaptic ligand- and voltage-gated ion channels and G-protein-coupled receptors
Authors:Dohovics Róbert  Janáky Réka  Varga Vince  Saransaari Pirjo  Oja Simo S
Institution:Tampere Brain Research Center, Medical School, University of Tampere, FIN-33014 Tampere, Finland. lorodo@uta.fi
Abstract:The presynaptic regulation of striatal glutamate transmission was investigated using D-3H]aspartate and mouse striatal slices. Functional changes in voltage-dependent and glutamate receptor-gated ion channels were elicited by pharmacologically modifying intracellular cyclic AMP formation via G-protein-coupled receptor stimulation. The kainate (KA)-evoked release was potentiated by the stimulatory G-protein (G(s))-coupled beta-adrenoceptor agonist isoproterenol (ISO) in a concentration-dependent manner. This effect was mimicked by the specific calmodulin (CaM) antagonists trifluoperazine and calmidazolium. Tetrodotoxin (TTX), a blocker of Na(+) channels, did not affect the basal release but inhibited to the same degree the releases evoked by kainate alone and by kainate and isoproterenol together. Vinpocetine, a blocker of voltage-dependent Na(+) channels, did not alter the basal or the evoked release. The Na(+) channel activator veratridine enhanced the basal release in a concentration-dependent manner and isoproterenol attenuated this effect. The opposite effects of isoproterenol on the kainate- and veratridine-evoked releases may reflect prevention of the cyclic AMP-protein kinase A (PKA) phosphorylation cascade in striatal glutamatergic signal transduction. In addition, the calmidazolium-induced potentiation of kainate-evoked release was thwarted by LY354740 and L-2-amino-4-phosphonobutanoate, agonists of the inhibitory G-protein (G(i))-coupled metabotropic group II and III glutamate receptors (mGluRs). Vinpocetine, which inhibits the CaM-dependent phosphodiesterase (PDE1), was likewise inhibitory. In turn, selective agonists and antagonists of the G(q)-protein-coupled group I mGluRs and (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) and (RS)-1-aminoindan-1,5-dicarboxylate (AIDA), which modulate the intracellular Ca(2+) levels, did not alter the kainate-evoked release.The beta-adrenoceptor-mediated cyclic AMP accumulation seems to downregulate Na(+) channels but to enhance glutamate release by means of upregulation of kainate receptors. This regulation of presynaptic ligand- and voltage-gated ion channels is affected by the cAMP-protein kinase A-dependent phosphorylation cascade and controlled by G(i)-protein-coupled mGluRs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号