首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks
Authors:De Vleeschauwer Stéphanie  Jungraithmayr Wolfgang  Wauters Shana  Willems Stijn  Rinaldi Manuela  Vaneylen Annemie  Verleden Stijn  Willems-Widyastuti Anna  Bracke Ken  Brusselle Guy  Verbeken Erik  Van Raemdonck Dirk  Verleden Geert  Vanaudenaerde Bart
Institution:Laboratory of Pneumology, Katholieke Universiteit Leuven, Leuven, Belgium.
Abstract:Almost all animal models for chronic rejection (CR) after lung transplantation (LTx) fail to resemble the human situation. It was our attempt to develop a representative model of CR in mice. Orthotopic LTx was performed in allografts receiving daily immunosuppression with steroids and cyclosporine. Controls included isografts and mice only undergoing thoracotomy (SHAM). Allografts were sacrificed 2, 4, 6, 8, 10 or 12 weeks after LTx. Pulmonary function was measured repeatedly in the 12w allografts, isografts and SHAM mice. Histologically, all allografts demonstrated acute rejection (AR) around the blood vessels and airways two weeks after LTx. This decreased to 50-75% up to 10 weeks and was absent after 12 weeks. Obliterative bronchiolitis (OB) lesions were observed in 25-50% of the mice from 4-12 weeks. Isografts and lungs of SHAM mice were normal after 12 weeks. Pulmonary function measurements showed a decline in FEV(0.1), TLC and compliance in the allografts postoperatively (2 weeks) with a slow recovery over time. After this initial decline, lung function of allografts increased more than in isografts and SHAM mice indicating that pulmonary function measurement is not a good tool to diagnose CR in a mouse. We conclude that a true model for CR, with clear OB lesions in about one third of the animals, but without a decline in lung function, is possible. This model is an important step forward in the development of an ideal model for CR which will open new perspectives in unraveling CR pathogenesis and exploring new treatment options.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号