首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arachidonic Acid-Induced Oxidative Injury to Cultured Spinal Cord Neurons
Authors:Michal Toborek  rzej Malecki  Rosario Garrido  Mark P Mattson  Bernhard Hennig  Byron Young
Institution:Department of Surgery, University of Kentucky, Lexington, USA.
Abstract:Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 microM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-KB (NF-kappaB), and cell viability. AA treatment increased intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 microM AA. In addition, AA treatment activated NF-kappaB and decreased levels of the inhibitory subunit, IKB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma.
Keywords:Free fatty acids  Spinal cord trauma  Oxidative stress  Antioxidants
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号