首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: effect of substrate position and tail length on the conformational gating step
Authors:Xu Qiang  Baciou Laura  Sebban Pierre  Gunner M R
Institution:Department of Physics, City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA.
Abstract:The ability to initiate reactions with a flash of light and to monitor reactions over a wide temperature range allows detailed analysis of reaction mechanisms in photosynthetic reaction centers (RCs) of purple bacteria. In this protein, the electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) is rate-limited by conformational changes rather than electron tunneling. Q(B) movement from a distal to a proximal site has been proposed to be the rate-limiting change. The importance of quinone motion was examined by shortening the Q(B) tail from 50 to 5 carbons. No change in rate was found from 100 to 300 K. The temperature dependence of the rate was also measured in three L209 proline mutants. Under conditions where Q(B) is in the distal site in wild-type RCs, it is trapped in the proximal site in the Tyr L209 mutant Kuglstatter, A., et al. (2001) Biochemistry 40, 4253-4260]. The electron transfer slows at low temperature for all three mutants as it does in wild-type protein, indicating that conformational changes still limit the reaction rate. Thus, Q(B) movement is unlikely to be the sole, rate-limiting conformational gating step. The temperature dependence of the reaction in the L209 mutants differs somewhat from wild-type RCs. Entropy-enthalpy compensation reduces the difference in rates and free energy changes at room temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号