首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reconstitution in vitro of MSP-based filopodium extension in nematode sperm
Authors:Miao Long  Yi Kexi  Mackey Joy M  Roberts Thomas M
Institution:Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.
Abstract:The major sperm protein (MSP) motility system in nematode sperm is best known for propelling the movement of mature sperm, where it has taken over the role usually played by actin in amoeboid cell motility. However, MSP filaments also drive the extension of filopodia, transient organelles composed of a core bundle of MSP filaments, that form in the late in sperm development but are not found on crawling cells. We have reconstituted filopodial extension in vitro whereby thin bundles of MSP filaments, each enveloped by a membrane sheath at their growing end, elongated at rates up to 17 microm/min. These bundles often exceeded 500 microm in length but were comprised of filaments only 1 microm long. The reconstituted filopodia assembled in the same cell-free sperm extracts that produced MSP fibers, robust meshworks of filaments that exhibit the same organization and dynamics as the lamellipodial filament system that propels sperm movement. The filopodia and fibers that assembled in vitro both had a membranous structure at their growing end, shared four MSP accessory proteins, and responded identically to agents that alter MSP-based motility by modulating protein phosphorylation. However, filopodia grew three- to four-fold faster than fibers. The reconstitution of filopodial extension shows that, like the actin cytoskeleton, MSP filaments can adopt two architectures, bundles and meshworks, each capable of pushing against membranes to generate protrusion. The reconstitution of both forms of motility in the same in vitro system provides a promising avenue for understanding how the forces for membrane protrusion are produced.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号